Problem 3

Solve the equation $|2 x-1|-|x+5|=3$.

Solution

Isolate one of the terms with an absolute value sign.

$$
\begin{equation*}
|2 x-1|=3+|x+5| \tag{1}
\end{equation*}
$$

Remove the absolute value sign on the left by placing \pm on the right side.

$$
2 x-1= \pm(3+|x+5|)
$$

As a result, equation (1) has split into two.

$$
2 x-1=3+|x+5| \quad \text { or } \quad 2 x-1=-3-|x+5|
$$

Isolate the remaining term with an absolute value sign.

$$
\begin{equation*}
|x+5|=2 x-4 \quad \text { or } \quad|x+5|=-2 x-2 \tag{2}
\end{equation*}
$$

Remove the absolute value sign in each equation by placing \pm on the right side.

$$
x+5= \pm(2 x-4) \quad \text { or } \quad x+5= \pm(-2 x-2)
$$

As a result, each of these equations in (2) has split into two.

$$
x+5=2 x-4 \quad \text { or } \quad x+5=-2 x+4 \quad \text { or } \quad x+5=-2 x-2 \quad \text { or } \quad x+5=2 x+2
$$

Solve each of these equations for x.

$$
x=9 \quad \text { or } \quad x=-\frac{1}{3} \quad \text { or } \quad x=-\frac{7}{3} \quad \text { or } \quad x=3
$$

Now, one by one, check to see whether these values of x satisfy the original equation.

$$
\begin{array}{ll}
x=9: & |2 x-1|-|x+5|=|2(9)-1|-|(9)+5|=17-14=3 \\
x=-\frac{1}{3}: & |2 x-1|-|x+5|=\left|2\left(-\frac{1}{3}\right)-1\right|-\left|\left(-\frac{1}{3}\right)+5\right|=\frac{5}{3}-\frac{14}{3}=-3 \\
x=-\frac{7}{3}: & |2 x-1|-|x+5|=\left|2\left(-\frac{7}{3}\right)-1\right|-\left|\left(-\frac{7}{3}\right)+5\right|=\frac{17}{3}-\frac{8}{3}=3 \\
x=3: & \\
x=12 x-1|-|x+5|=|2(3)-1|-|(3)+5|=5-8=-3
\end{array}
$$

Therefore,

$$
x=\left\{-\frac{7}{3}, 9\right\} .
$$

The graph below verifies that these are in fact the only two solutions.

